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The 23Na NMR spectrum of NaCl in various stretched hydrogels displays a well-resolved triplet with the
theoretically predicted relative intensities of the components of 3:4:3. Families of such spectra were
obtained using partially-saturating radio-frequency (RF) radiation over a range of off-set frequencies;
the resulting steady-state irradiation envelopes, or ‘z-spectra’, have the notable feature that marked sup-
pression of the three peaks occurs when the irradiation is applied on any of them or exactly in the middle
between the central peak and either of the two satellites. We present a quantum mechanical analysis that
describes this phenomenon and show that it depends on double and triple quantum transitions. The
physical–mathematical analysis is an extension of our quadrupolar case for HDO with 2H NMR. The
experimental procedures and results have implications for enhancement of contrast in 23Na magnetic
resonance imaging of heterogeneous systems using quadrupolar interactions.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The work described here is an extension of that previously car-
ried out using 2H NMR [1]; it is centered on a variant of the NMR
saturation transfer experiment involving quadrupolar nuclei in
which radio-frequency (RF) radiation is applied at frequency off-
sets across the whole 23Na NMR spectrum of NaCl in a stretched
gel. The resulting, so-called, ‘z-spectrum’ [2] has the notable fea-
ture that marked suppression of the 3:4:3 triplet occurs when
the irradiation is applied either on each of the three peaks or ex-
actly in the middle between the central peak and either of the
two satellites.

There is currently much interest in z-spectra for the character-
ization of materials [3], together with effects of radiation damping
on the shapes of the emerging spectral envelopes [4]; and the use
of the related phenomenon of magnetization transfer contrast
(MTC) [5,6] mediated by chemical exchange via interactions with
paramagnetic ions (paraCEST) in vivo [7]. These types of experi-
ments, conducted with quadrupolar nuclei, hold promise for stud-
ll rights reserved.
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ies of cells in vitro and in vivo; and a variant of them has recently
been used to measure the transmembrane exchange of 2H-labeled
water in human erythrocytes [8].

In order to place the understanding of 23Na NMR z-spectra on a
firm footing we sought a quantitative, quantum mechanical
description of them. Such a description requires estimates of the
relaxation times of high rank, high order, nuclear spin states that
in principle could have atypically large values.

By generating a homogeneous but anisotropic (aligned) envi-
ronment for guest molecules, using stretched gels [9,10], previ-
ously inaccessible dipolar and quadrupolar spectral splittings are
produced by spins in solute molecules. This effect is also used in
stereo-selective structure determination [11–13]; a gel in a sup-
porting elastomer tubing, that is held in an adjustable, stretched
state, makes available estimates of a range of residual dipolar
and quadrupolar coupling constants [9,10].

In the present work we measured the relaxation times of all of
the spin states that determine the relaxation of 23Na+ when it is
present in stretched-gelatin gels. For this analysis, a series of selec-
tive, RF pulse sequences was used to generate data from which the
relaxation times of the tensors T1,0, T1,±1, T2,0, T2,±1, T2,±2, T3,0, T3,±1,
T3,±2, and T3,±3 were measured. Then we recorded a series of z-spec-
tra for a range of RF amplitudes and simulated/fitted them in Math-
ematica [14] using a detailed analytical expression, with estimates
of the relaxation times of all nine tensors, in an extension of our
previous work on HDO in stretched gels [1]. Thus we demonstrated
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consistency of the measured values of the relaxation times with
the overall z-spectra.

The mathematical expression that describes the z-spectrum
was based on the formation of high-rank, high-order spherical ten-
sors under conditions of steady-state RF irradiation. The theory in
this and our previous work [1] was based on that in which high-
rank tensors are formed by selective RF pulses; this has been pre-
sented previously by Freeman and Whiffen [15], Hatanaka et al.
[16,17], Pines and Vega et al. [18,19], and Bain et al. [20–22]. The
spherical tensor operator basis set in the Hilbert space of quadru-
polar spins, which was used in the analysis, relies on Müller et al.
[23], and Chung and Wimperis [24]; and the average Liouvillian
theory that was used has been reviewed recently by Ghose [25].
In the previous [1] and current study we add theoretical and exper-
imental results that deal with the effect of saturating the spin
populations off resonance; and we demonstrate the role of multi-
ple-quantum transitions in determining the shape of the z-spectra.

2. Methods

2.1. Theory

2.1.1. Density matrix
The equations of motion of the density operator (the caret de-

notes an operator) in Hilbert space are given by the Liouville–
von-Neumann equation [26]:

dq̂
dt
¼ �i½bH; q̂� ð1Þ

where q̂ is the density operator, and bH is the Hamiltonian. When
relaxation is included in the system, Eq. (1) becomes:

dq̂
dt
¼ �i½bH; q̂� � bbRðq̂� q̂eqÞ ð2Þ

where bbR is the Redfield relaxation super-operator that acts on q̂.
In the present system, which involves quadrupolar 23Na nuclear

spins, the expression for bH is [1,27,28]:

bH ¼ x1
bIx � ð1=3ÞxQ 3bI2

z � IðI þ 1Þ
� �

þ dxbIz ð3Þ

where x1 is the magnitude in frequency units of the B1 RF magnetic
field; bIx is the x-axis spin operator; xQ is the residual quadrupolar
coupling constant (note that it is half the frequency difference
(Hertz) expressed in rad s�1, between either of two components
of the triplet) bIz is the z-axis spin operator; I is the spin quantum
number of the nucleus; and dx is the off-set frequency of the B1

RF field.
The commutator in Eq. (2), called the Liouvillian, can be repre-

sented as a super-operator that acts on q̂, thus Eq. (2) takes the
form:

dp̂
dt
¼ �i

bbLq̂� bbRðq̂� q̂eqÞ ð4Þ

When the RF field is applied continuously for sufficiently long be-
fore acquiring the free induction decay (FID), the energy of the spin
system reaches a steady state in which energy input from the RF
field is balanced by losses via relaxation to the ‘lattice’. Thus, the
derivative on the left hand side of Eq. (4) becomes 0. By rearranging
this equation, we obtain the expression for the steady-state density
operator, q̂ss:

q̂ss ¼ i
bbL þ bbR� ��1 bbR q̂eq ð5Þ

where q̂eq is the density operator at equilibrium under the Zeeman
Hamiltonian.

The matrix representation of the Liouvillian (commutator of the
Hamiltonian in operator or Liouville space) was developed as de-
scribed in [1].

Any operator can be represented as a column vector, e.g.,bIz ¼ ð0;1;0;0;0;0;0; 0;0;0;0;0;0;0;0ÞT . Thus the sum of the
Liouvillian and relaxation super-operators can be represented in
matrix form. Each diagonal term describes the evolution of one
component of the density operator, and each off-diagonal term de-
scribes the transformation of one component into another. Trans-
formations between components that differ in both rank and
order do not occur; transformations in round brackets that differ
in rank can only be induced by RF irradiation or auto-relaxation;
the remainder are brought about by evolution in time or cross-
relaxation under the quadrupolar Hamiltonian. We also emphasize
that the spherical tensors are not eigenoperators of the relaxation
super-operator; only if the cross-relaxation terms are zero will this
be the case. And in Section 3 we show that this is the case with the
present system, within experimental error.

First consider the relaxation super-operator:
ð6Þ
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where the Rl,0, l = 1, 2, or 3, denote longitudinal relaxation rate con-
stants of rank-l-order-0 tensors; Rl,p with p > 0 denotes a transverse
relaxation rate constant of a rank-l-order-p tensor; while Rlp,mn de-
notes a cross-relaxation rate constant of a rank-l-order-p tensor
with a rank-m-order-n tensor. In the next step in the analysis,
the terms in round brackets in Eq. (6) were set to zero because of
the selection rules [29] that specify no cross-relaxation between
odd and even rank operators. Thus ibbL þ bbR in Eq. (5) has the follow-
ing form:
and to keep track of the overall form of the split matrix, the diag-
onal elements are enclosed in rectangles.

The expectation value hT1;0i ¼ hbIzi (z-magnetization) was evalu-
ated by taking the trace on the inner product of Îz [represented by
the column (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T] and the density
operator given in Eq. (5). Thus, the matrix in Eq. (7) was pro-
grammed in Mathematica [14] and it was inverted and multiplied
by the previous column vector. While an analytical expression
was able to be obtained this way, as was done for the 8 � 8 matrix
ð7Þ
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for our HDO counterpart using the Mathematica [14] function In-
verse [1], its size and complexity make its presentation here unjus-
tified (in terms of space). Also, in all the evaluations, radial
frequencies were substituted by Hertz, viz., m1 = x1/2p, dm = dx/
2p, and mQ = xQ/2p.

2.1.2. Mathematica programming
The equation describing the z-spectrum was evaluated numer-

ically on a ‘few-seconds’ time scale in Mathematica [14] (installed
on a Macintosh MacBook Pro with 2 GB of memory, running at
2.16 GHz) for a set of input parameter values as indicated below
and in the captions of the figures.

Nonlinear regression of the function for the dependence of the
z-spectra on frequency offset (dm), written in terms of the spectral
density functions, J0, J1, and J2, was carried out with the Mathemat-
ica [14] function, FindFit. We simultaneously fitted a fourth param-
eter, a scaling factor, that ensured that the value of the normalized
z-spectrum was 1.0 when dm was �100 times greater or less than
those used experimentally.

2.2. Gels

In its liquid state (usually at 40–80 �C) gelatin (Gelita, Brisbane,
Qld, grade 20 N) solution (30–50% w/v in 100% D2O) containing
154 mM NaCl was drawn into a silicone rubber tube (for 5-mm
NMR tubes Silastic� laboratory tubing from Dow Corning Corpora-
tion; Cat. No. 508-009, 1.98 mm i.d., 3.18 mm o.d.) and was sealed
with a plug at one end, as previously described [1,9]. This tube was
then inserted into a glass tube (5-mm o.d.) so that when ‘setting’
had occurred (at less than �30 �C) the gel could be stretched inside
the silicone tube, and held extended by a thumbscrew that was
positioned at the upper end of the outer glass tube [1,9].

2.3. NMR

2.3.1. Spectrometer and data processing
23Na NMR spectra were recorded at 105.4 MHz on a Bruker DRX

400 spectrometer (Bruker, Karlsruhe, Germany) with an Oxford
Instruments (Oxford, UK) 9.4 T, vertical, wide-bore magnet.

Gaussian–Lorentzian deconvolution (Bruker, TopSpin 2.0) or
manual integration were used, as relevant, to extract the relative
areas of resonances in 1-dimensional (1D) spectra.

2.3.2. Pulse sequences
2.3.2.1. z-Spectra. For the saturation envelopes (z-spectra) the pulse
sequence that was used employed a period of low amplitude, var-
iable offset, irradiation followed, after a 20 ls amplitude switching
delay, by a phase-cycled b (usually p/2) pulse, then acquisition of
the FID; selective irradiation was achieved with a pulse of duration
5–10 times the longitudinal relaxation time, using a power-atten-
uation of �40–60 dB from a standard Bruker 300 W amplifier; the
acquisition time was 75–125 ms. Most spectra were recorded with
a pre-saturation delay of 50 ms followed by a saturating pulse of
50 ms and acquisition time of 75 ms, to minimize distortion of
the baseline. The value of the saturating power was initially ad-
justed empirically to achieve full signal suppression of the 23Na+

signal in the unstretched state of the sample. In further experi-
ments, the attenuation was set so that incomplete saturation was
achieved. The irradiation frequencies were varied in small steps
from high to low frequency across the spectrum, beginning and
ending where there was no apparent peak suppression. After stan-
dard 1D processing all spectra were integrated. Each integral was
plotted as a fraction of that of the corresponding non-irradiated
spectrum (see Fig. 1); i.e., it was normalized to the control
spectrum.
2.3.2.2. Relaxation times of zero quantum tensors, T1,0 and T2,0. The
relaxation rate constants R1,0, and R2,0 of the tensors T1,0 and T2,0,
respectively (see Eq. (6)) were estimated by selectively irradiating
at the high frequency (left hand) satellite in the spectrum (see e.g.,
Fig. 1) and observing the FID by using a pulse with flip angle
b = 63.4� (cos2 b = 1/5), b = 116.6� (cos2 b = 1/5) followed by the
addition or subtraction of the spectra; addition gave the value of
R1,0, while subtraction gave the value of R2,0. (Note: the inversion
recovery experiment used to estimate T1,0 could be applied and
the resulting value was close to the T1 values for isotropic gels
but it was mixed with T3,0.) The pulse sequence and phases, /i,
i = 1, 2, . . . of the cycle of pulses and the receiver, /r, were:
�selective RF/1 � s� b/2

� acquire/r
, and /1 = {0}, /2 = {0 1 2 3},

/r = {0 1 2 3}, where s is a variable delay (16 values from 0.0 to
200.0 ms, chosen to give a statistically robust, double exponential
fit to the data). We used the following nomenclature for the phase
angles of the RF pulses and the receiver: / = {{. . .}�n}^m, where �n
denotes repeating the phase steps in the preceding braces n times,
and ^m denotes adding the integer m to the phase step in the pre-
ceding braces. This gives a concise representation of entire phase
cycles used in the various experiments. Unless otherwise indicated,
phase steps are in units of 90�. For this experiment R2,0 is an eigen-
value and is estimated directly from data acquired with this pulse
sequence. If the decay of T1,0 were biexponential then the data
would yield estimates of T1f and T1s (f and s denote fast and slow,
respectively) from which, assuming isotropic tumbling we could
extract estimates of the values of R1,0, and R3,0.

2.3.2.3. Additional estimate of R2,0. This estimate was also made
using the Jeener–Broekaert pulse sequence [30] as follows: delay
�90

�

/1
� s� 180

�

/2
� s� 45

�

/3
� 45

�

/4
� acquire/r

, with 16 values of
s used to give a precise single-exponential fit to the data, with
the phase cycle /1 = {{{0}�32}^1^2^3}, /2 = {{{0}�8 {2}�8 {1}�8
{3}�8}^1^2^3}, /3 = {{{1}�4 {3}�4}�4}^1^2^3}, /4 = {{{0 1 2 3}�8}^
1^2^3}, /r = {{{{3 0 1 2 1 2 3 0}�2}^2}^1^2^3}.

2.3.2.4. Estimates of R1,0 and R3,0. For these estimates we used a tri-
ple-quantum filter after a conventional inversion recovery pulse
sequence, as follows: delay – 180�/1

�s�70:5�/2
�90�/3

�acquire/r
,

where the phase cycle was /1 = {{{0}�6{2}�6}^1^2^3}, /2 = (30�
increments) {{{1 3 5 7 9 11}�2}^3^6^9}, /3 = {{{0}�12}^1^2^3},
/r = {{{0 2}�6}^1^2^3}. The data were fitted by nonlinear regres-
sion analysis in Mathematica [14] to the function, Signal¼
Ase�s=T1;s �Af e�s=T1;f , where the pre-exponential As denote the
amplitudes of the two components of the Signal (magnetization)
and the subscripts, s and f, denote fast and slow, respectively.

2.3.2.5. Estimates of R1,1, R2,1 and R3,1 of the respective single quantum
tensors. The relaxation times of the one-quantum irreducible
spherical tensors were estimated from data acquired with the
following quadrupolar-echo RF pulse sequence, with the variable
delay s: delay �90

�

/1
� s

2� 70:5
�

/2
� s

2� acquire/r
, and with phase

cycles either /1 = {{0}4}^1^2^3, /2 = {1 2 3 0}^1^2^3, /r = {0 2
0 2}^1^2^3 from Halle and Furo [31] or:

/1 = (60� increments){{0}�8}^1^2^3^4^5, /2 = (45� increments)
{0 1 2 3 4 5 6 7}, /r = (30� increments) {0 3 6 9 0 3 6 9}^10^8^6^4^2
from Eliav and Navon [32].

Both sequences gave data that yielded, by nonlinear regression
in Mathematica [14], different values for the relaxation rate con-
stants for the center peak and the two satellites.

2.3.2.6. Estimates of R2,2 and R3,2 of the respective double quantum
tensors. The pulse sequence employed a double-quantum filter
with a flip angle of 109.5� (cos 109.5� = �1/3) for the refocussing
pulse, to refocus the residual quadrupolar interaction during the
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Fig. 1. 23Na NMR (105.4 MHz) pulse-and-acquire spectra, and z-spectra (steady-state irradiation envelopes; normalized to the control spectrum) of 23Na+ in stretched gelatin
gel, and the effect of applying selective RF irradiation with various magnitudes (Hertz) to the 23Na spins across a range of ±2400 Hz. The symbols indicate spectral integrals
and together they make up the z-spectra. Above A and D is the same pulse-and-acquire spectrum showing the satellite peaks broader than the central peak, and enabling
visual alignment of the peaks with the corresponding parts of the z-spectra. The black lines are the result of simulation/fitting of the function described in Section 2.1 to the
respective data. The fitted RF amplitudes (Hertz) were: A, purple squares, 165; B, blue inverted triangles, 145; C, cyan upright triangles, 140; D, green discs, 113; E, orange
discs, 98; and F, red diamonds, 80. The values of the relaxation times used for all the z-spectra are given in the right-hand column of Table 1 that were arrived at by using the
experimental estimates given in the second column as initial estimates. The inset shows all six simulation/fits, where the colors of the lines correspond to the colors of the
symbols in the respective data sets. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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quadrupolar evolution time. The off-set frequency was that of the
central peak of the spectrum [1]:

delay� 90
�

/1 �
1

2dm
� 90

�

/2 �
s
2
� 109:5

�

/3 �
s
2
� 90

�

/4 �
1

2dm
� 90

�

/5

� d4� 90
�

/6 � acquire/r

where the phase switching delay, d4 = 4 ls.
The phase cycle was: /1 = {{0 1 2 3}�2}^2, /2 = {0 1 2 3}, /3 =

(45� increment){{1 3 5 7}�16}^1,^2,^3^4^5^6^7, /4 = {0}�4{2}�4,
/5 = {0}�4{2}�4, /6 = {0}�16 {2}�16 {1}�16 {3}�16, /r = {{{{{{0
2}�2}�2}^2}^2^1^3}^2}�4.

This pulse sequence yielded magnetization time courses for
each of the three peaks that when fitted by a single exponential
yielded estimates for R2,2 and R3,2. We could not reliably fit a bi-
exponential function to the data so the estimates of T2,2 and T3,2

were considered to be the same.
2.3.2.7. Estimates of R3,3 of the triple quantum tensor. The value of
R3,3 was estimated from data obtained with a triple-quantum-filter
pulse sequence [24]: delay� 90

�

/1 � 1
4dm� 180

�

/2 � 1
4dm� 90

�

/3 � s
2�

180
�

/4 � s
2� 90

�

/5 � acquire/r , with the phase cycle, /1 = (30� incre-
ments) {{1 3 5 7 9 11}^3^6^9}, /2 = (30� increments) {{{1 3 5
7 9 11}^3^6^9}^6}, /3 = (30� increments) {{4 6 8 10 0 2}^3^6^9},
/4 = {{{{0}�6}^1^2^3}�2}^2, /5 = {{{0}�6}^1^2^3}, /r = {{0 2}�3}^
1^2^3.

3. Results

3.1. Overview of z-spectra as RF amplitude was varied

Fig. 1 shows a set of six z-spectra derived from deconvolution of
�300 23Na NMR spectra acquired at 105.4 MHz. The sample was
selectively irradiated, with a series of RF amplitudes, over a range
of frequencies around the central peak in the spectrum, in steps of
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16 Hz, from �2400 Hz to 2400 Hz. The higher RF amplitudes pro-
duced deeper dips in the z-spectra, as is exemplified by comparing
Figs. 1A and 1F.

The samples were hypertonic saline consisting of 900 mM
23NaCl in gelatin (50% w/v), that was cooled to 15 �C; the gel was
stretched with an elongation factor of 0.7 (1.7 times the original
length). The most marked suppression (i.e., a minimum in the
envelope of peak integrals) in Fig. 1A occurred when irradiation
was exactly at the intermediate frequency between either satellite
and the central peak of the quadrupolar triplet, at relatively high
amplitude; but at the lowest amplitude, Fig. 1F, the deepest dip
was the central one.

With the extent of stretching used in these experiments, the dif-
ference in frequency between the satellites and the central peak
was �1000 Hz; and half this value (515 Hz) is the residual quadru-
polar coupling constant, mQ, in Eq. (7), that was the value used in
the subsequent analysis. The various solid lines show the result
of fitting the data with the same set of relaxation rate constants
given in the right-hand column of Table 1, but with a series of
different RF amplitudes (m1 values).

3.2. Relaxation times

Using the pulse sequences described in Section 2.3.2, with sam-
ples of stretched gelatin the same as used for the data in Fig. 1, the
various relaxation times were estimated by nonlinear regression of
the relevant exponential functions onto the data. The values are gi-
ven in Table 1. Note the, only modest, precision of the estimates
with coefficients of variation all around 10%.

3.3. Simulating and fitting z-spectra

For initial fitting of the data in Fig. 1 the only parameter that
was adjusted in the process was the amplitude of the partially-sat-
urating RF field (in Hertz), as the R values had been estimated by
using the pulse sequences in Section 2.3.2. However better fits
across all six spectra were obtained by adjusting the experimental
values. Therefore, it was valuable to gain an impression of the sen-
sitivity of the fits to variations in the values of the relaxation times.
Thus, accepting the experimentally determined values given in
Table 1 as the ‘reference set’, z-spectra were simulated for each
relaxation time, 1/10th and 10 times the reference value (Fig. 2).

It is clear from Fig. 2 that each relaxation time has a character-
istic effect on the form of the z-spectral envelope; but in a manner
akin to the pseudo-orthogonality of a magnetic field shim set these
Table 1
Relaxation times of the nine spin states that corresponded to the irreducible spherical ten
right-hand zero subscript are longitudinal relaxation times; those with 1 in this position a
transverse relaxation of two and three quantum states, respectively.

Relaxation
parameters

Experimental
value (1/R; ms)

Experiment type and fitti

T1,0 = 1/R1,0 11.2 ± 1.2 Saturation experiment an
11.8 ± 1.0 Biexponential fit for T3,0,

T1,1 = 1/R1,1 8.0 ± 0.3 Single-exponential fit; sa

T2,0 = 1/R2,0 5.3 ± 1.0 Saturation experiment an
3.30 ± 0.11 Jeener–Broekart and sing

T2,1 = 1/R2,1 1.9 ± 0.1 Single-exponential fit

T2,2 = 1/R2,2 2.10 ± 0.06 Average of values for thre
biexponential; should giv

T3,0 = 1/R3,0 4.4 ± 0.5 Biexponential fit gives T3

T3,1 = 1/R3,1 8.0 ± 0.3 Single-exponential fit; sa

T3,2 = 1/R3,2 2.1 ± 0.06 See abovea

T3,3 = 1/R3,3 7.7 ± 0.1 Single-exponential fit
characteristics are mixed in some instances [1]. Specifically: (1)
reducing the longitudinal relaxation rate constant R1,0 leads to an
overall negative excursion of the spectrum (lowers it) without
changing individual features, while increasing it flattens it out
(raises it). (2) Increasing the transverse relaxation rate constant
R1,1 broadens the outer shoulders (wings) on the two dips that
correspond to the satellites and increases the distance of theses
minima to the central dip, but scarcely alters the rest of the z-spec-
trum. (3) Increasing/decreasing the rank-2 longitudinal relaxation
rate constant R2,0 greatly increases/decreases the depth of the
two satellite dips but does not alter the central dip. (4) Increasing
the rank-2 transverse relaxation rate constant, R2,1, increases the
depth of the central dip of the z-spectrum and suppresses the outer
shoulders corresponding to the satellites. (5) Variations in the va-
lue of R2,2 over two orders of magnitude only alters the depth of the
‘intermediate’ dips, the smaller value increasing the depth of the
dip. (6) Variation of the first of the rank-3 tensor’s (longitudinal)
relaxation rate constant R3,0 has almost no effect on the intermedi-
ate dips but a major effect on the central dip, and less so on the two
satellite dips; increasing the value deepens the z-spectrum in these
sections. This is the opposite effect to that when R1,0 is varied
(apart from the intermediate dips, see above). (7) Increasing the
value of the third rank transverse relaxation rate constant, R3,1,
has a characteristic ‘‘cross-over effect” at the central dip, not alter-
ing the value of the minimum very much, not changing the value of
the intermediate minimum at all, but increasing the width and
decreasing the separation between the satellite dips (see R1,1 for
an opposite effect). (8) When R3,2 is decreased the satellite and cen-
tral dips are not affected significantly, and the main effect is a
marked accentuation of the two intermediate dips. (9) Most dis-
tinct of all the effects of variation of any of the relaxation rate con-
stants is that of R3,3. This only affects the depth of the central, sharp
dip; specifically, a decrease in R3,3 increases its depth. This is
shown in greater detail using rescaling of the central part of the
z-spectrum (Fig. 2 bottom right-hand panel). Finally, (10) increas-
ing the intensity of the partially-saturating RF field that is used to
elicit the z-spectrum has an overall suppression effect; this is seen
in Figs. 1 and 2 where it accentuates the central sharp dip, that is
also most affected by the value of R3,3 (see point 9 above).
3.4. Other fitting models

The expression that describes a z-spectrum for I = 3/2, gener-
ated in Section 2.1 uses the Rs as, in effect, first order rate
constants. However, a deeper physical interpretation of these
sors. The subscripts refer to the corresponding tensor. Those relaxation times with a
re the ‘conventional’ R2 times (1/T2); while those with 2 or 3 in this position refer to

ng z-Fitted value (1/R; ms)

d single-exponential fit 10.0
and T1,0

me value as T3,1 7.0

d single-exponential fit 5.0
le-exponential fit

3.5

e peaks; could not fit a
e two values, one each for T2,2 and T3,2

a
3.0

,0, and T1,0 4.0

me value as T1,1 2.0

5.0
15.0



Fig. 2. Simulations of 23Na NMR z-spectra (saturation envelopes; fraction of the integral of the control spectrum) from 23Na+ in stretched gels with a fixed extent of stretching,
using the theory in Section 2.1. The control spectrum in each case was drawn in blue and corresponded to the z-spectrum that would have been obtained with the experimental
R values given in the second column of Table 1 (with R3,3 chosen to be 3.3 ms), and with mQ = 515 Hz, and m1 = 110 Hz. Decreasing the corresponding relaxation rate constant
(indicated inside the left hand side of each panel) by a factor of 10 gave the green curve, while increasing it by a factor of 10 gave the red curve. Because the effect on the central
dip invoked by changing R3,3 was so subtle, and only effective there, these three curves are also displayed using a higher scale (and arrow) on the central region of the spectrum,
in the bottom right-hand panel. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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parameters invokes spectral density functions that capture the
ensemble-average behavior of the spins [29,30,33,34]. There are
three such functions that are defined as,

Jn ¼ C
2sc

1þ ðnx0scÞ2
; n ¼ 1;2; and 3 ð8Þ

where sc is the rotational correlation time of the spins, x0 is the
Larmor frequency, and C is a constant that is a function of the elec-
tric quadrupole moment amongst other physical parameters [29].
The relationship between the Js and Rs are presented in the litera-
ture [29,30,33,34] and yet they are now readily derived, and gener-
alized to I > 3/2 (for later work) using symbolic computation; in the
present case the derivations were done via Ptolemy IV ([35]; sub-
program available via email from the authors). Table 2 contains
the relevant expressions and these were used to fit the z-spectrum
function, expressed in terms of the three Js, to the data in Fig. 1A;
the fit is shown as the dotted line in Fig. 3.

Even further reduction can be invoked in the dimensionality of
parameter space, by noting that Eq. (8) has only two adjustable
parameters (other than x0 that is specified by the particular



Table 2
Relationships between the relaxation rate constants and the three spectral density
functions, J0, J1, and J2, according to the Redfield relaxation theory as described by
Jaccard et al. [29], and Kemp-Harper [30]. Confirmed using Ptolemy IV [35].

Relaxation rate constants Expressions in terms of spectral density functions

R1,0 (1/5) (2J1 + 8J2)
R1,1 (1/5) (3J0 + 5J1 + 2J2)
R2,0 2 (J1 + J2)
R2,1 J0 + J1 + 2 J2

R2,2 J0 + 2J1 + J2

R3,0 (1/5) (8J1 + 2J2)
R3,1 (1/5) (2J0 + 5J1 + 3J2)
R3,2 J0 + J2

R3,3 J1 + J2

R30,10 = R10,30 (4/5) (J1 � J2)
R31,11 = R11,31 (

p
6/5) (J0 � J2)
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NMR spectrometer used). Therefore, via the expressions in Table 2,
the Rs are seen to be (complicated) nonlinear functions of C and sc

in a way that is well discussed by Kowalewski and Mäler [36].
Thus, the data in Fig. 3 were also fitted (visually; solid blue line)
using just the two parameters, C and sc. It is clear that restricting
fitting-parameter-space to two dimensions did not enable the cap-
ture of many of the subtle features of the multiple-inflection-point
z-spectrum.
4. Discussion

4.1. z-Spectra as RF amplitude is varied

There are three striking and characteristic features of the
z-spectra of 23Na+ in stretched-gelatin gels. They are: (1) three of
the dips correspond to the three single quantum transitions of the
spin system; (2) two additional sharp dips are centered exactly be-
tween the satellite and central peaks on the normal quadrupolar-
split spectrum; and (3) a very sharp central dip that projects below
the main central minimum is a feature that in simulations is un-
Fig. 3. Fitting the data from panel A in Fig. 1 (purple squares) with the theory in
Section 2.1, but using expressions for the spectral density functions alone (plus the
scaling factor), and the rotational correlation time alone (plus the scaling factor C in
Eq. (8)). The dashed line was obtained with mQ = 515 Hz, m1 = 165 Hz, and with the
Rs expressed in terms of the three spectral density functions, J0, J1, and J2 according
to the expressions given in Table 2; for this particular (dashed) line the values
(Hertz) were 431.4, 17.1, and 25.6, respectively. (Note that this was an empirical
nonlinear regression fit using FindFit in Mathematica, whereby the relative values of
the three parameters were unconstrained and yet the expected order of values for a
real physical system, with fast motional narrowing, would be expected to be
J0 > J1 > J2; see the text for comments on this aspect.) The solid blue line was
obtained also with mQ = 515 Hz, m1 = 165 Hz, and by expressing the spectral density
functions in terms of a scaling factor (C) and the rotational correlation time sc (see
Eq. (8), and [28] for the expressions), and the J values were in turn substituted into
the expressions for the Rs (see Table 2). Thus, for the solid blue line, C = 1.0 � 1011

and sc = 1.0 � 10�9 s. The orange line shows a simulation using the R values the
same as those determined experimentally (with R3,3 chosen to be 3.3 ms) as given
in the second column of Table 1. In addition, mQ = 515 Hz and m1 = 175 Hz, the latter
being the same as used for the solid line in Fig. 1A. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
iquely influenced by R3,3. It is the extent of this sharp inverted spike
that is most affected by variations in the value of R3,3 (see Fig. 3). This
feature is diagnostic of the existence of the rank-3, order-3 spin
state; in other words, the triple quantum state is manifest in the
z-spectrum as the sharp central dip. On the other hand the existence
of the double quantum states (T2,2 and T3,2) are manifest as the inter-
mediate dips, while the dips in the frequency ranges of the original
triplet reflect single quantum states.

4.2. Relaxation rates of spin states

As seen in Table 1, the values of the nine relaxation rate con-
stants were within an order of magnitude of each other, and in
the neighbourhood of 10 ms. Thus, we did not reveal any long-
lived states for 23Na+ in the present system; although to ensure a
good fit to the data (Fig. 1) only two Rs were changed to around
twice their experimental values, measured with the specific pulse
sequences, one being R3,3 (see Table 1); its new, fitted value was
15 ms.

A more general strategy for obtaining estimates of relaxation
rate constants is desirable. One way that holds promise would be
the direct multi-parameter fitting to z-spectra. Another way is to
use the systematic selection of specific orders and ranks of tensors
that provide a more general selection approach for arbitrary spins
than performing separate experiments [37]. Both approaches de-
serve further adaptation to the present system.

4.3. Previous conceptualization

The theory used to describe the present z-spectra for nuclei of
spin I = 3/2 was a direct extension of that presented for 2H, an
I = 1 nucleus. Symbolic inversion of i

bbL þ bbR was possible, for I = 1,
leading to a relatively compact, closed mathematical expression
for the z-spectrum of 2H (Eq. (13) in [1]). A symbolic inverse of
ibbL þ bbR was possible via Mathematica [14] for the case of I = 3/2,
meaning that a 15 � 15 matrix was readily inverted. However
the expression was unacceptably large and slow to evaluate for
every frequency-off-set required for graphical representation of a
z-spectrum. Therefore numerical matrix inversion was used
throughout the fitting and simulation stages of our data analysis.
Time constraints imply that simulation/fitting of z-spectra of quad-
rupolar nuclei with even larger spin quantum numbers will, in the
foreseeable future, require a numerical approach.

4.4. Further dissection of z-spectra

The systematic analysis of the effects of varying relaxation
times on the shapes of the z-spectra highlighted the feature that
is also seen with the corresponding 2H NMR z-spectra from HDO
in stretched-gelatin gels [1]. Specifically, there is a peculiar, almost
separable effect of each of the relaxation times on particular fea-
tures of the z-spectrum. This outcome makes the process of visu-
ally fitting the spectral-envelope function to the data very
simple, and akin to the process of shimming the B0 field of the
magnet of an NMR spectrometer. It also implies that multi-param-
eter nonlinear regression once developed could yield almost-
unique fits of the relevant spectral-envelope function, or its
numerical representation in a ‘loop’, to the data and thus give reli-
able estimates of the nine relaxation times without the need to
make separate measurements using the (complicated) pulse se-
quences described in Section 2.3.2.

4.5. Future modeling of z-spectra

While individual z-spectra were able to be fit well by adjusting
the nine R values, when these were applied to a series of other
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z-spectra, only changing the m1 values, these other fits showed
large systematic deviations; this is evident in Fig. 1.

It was very clear that fitting of the z-spectra was most favorable
when the values of the ‘cross-relaxation’ rate constants R31,11 and
R30,10 were very small. From Table 2 it is seen that these depend
on differences between pairs of spectral density functions so inev-
itably will be smaller. However, when fitting the z-spectra using
only the Js (Fig. 3) without constraints yielded the outcome that
J1 < J2; this is physically impossible for a system that is fast-
motionally averaged; but there are situations involving, diffusion
on curved surfaces [38], and ion migration in an electric field gra-
dient of a virus particle for which J1 < J2 [39]. In another biological
case, bovine nasal cartilage, the inequality is not apparent, but nev-
ertheless J1 = J2 [40]. Thus when J1 < J2 this means that the value of
R31,11 is negative. The overall conclusion in the present case is that
the theory required to describe our z-spectra is more complicated
than that originally proposed for fast motional narrowing [36]. One
way to address this would be to develop a model based on the
spectral density functions (Eq. (8)) with a Gaussian (or other) dis-
tributions of sc values; or, consideration could be given to xQ or B0

inhomogeneities. These aspects are yet to be explored, and such
successful models should be able to account for the broader satel-
lite peaks (see 23Na+ spectra in Fig. 1) relative to the central peak.

5. Conclusions

We describe mathematically the form of the 23Na NMR steady-
state irradiation envelope (z-spectrum) of 23NaCl in gelatin gel that
was partially aligned by stretching. Quantification of the contribu-
tions of the various eigenstates to the final single-quantum magne-
tization required measurement of the relaxation times for each of
these states. Marked suppression of the three components of the
residual quadrupolar doublet, by irradiation at the intermediate
frequency between the peaks, can be attributed to perturbation
of the distribution of double quantum states. We show, for the first
time to our knowledge, the hallmarks of double and triple quan-
tum coherences in the 23Na+ z-spectrum, being the two intermedi-
ate dips and the sharp central dip, respectively. We note that 23Na+

NMR signal suppression by saturating high rank spin-tensor popu-
lations could be used for contrast-enhancement, and as the basis
for magnetization transfer experiments in vivo.
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